In this study, we explored the feasibility of using electrochemically generated γ‐LixV2O5 as an insertion‐type anode in the lithium‐ion capacitor (LIC) with activated carbon (AC) as a cathode. Along with the native form of V2O5, their carbon composites are also used as the electrode material which is prepared by high‐energy ball milling. The electrochemical pre‐lithiation strategy is used to generate the desired γ‐phase of V2O5 (γ‐LixV2O5). Under the optimized mass loading conditions, the LICs are assembled with γ‐LixV2O5 as anode and AC as a cathode in the organic medium. Among the different LICs fabricated, AC/γ‐LixV2O5‐BM50 configuration delivered an energy density of 33.91 Wh kg−1 @ 0.22 kW kg−1 with excellent capacity retention characteristics. However, a dramatic increase in energy density (43.98 Wh kg−1@0.28 kW kg−1) is noted after the electrolyte modification with fluoroethylene carbonate. The high temperature performance of the assembled LIC is also studied and found that γ‐LixV2O5 phase can be used as a potential battery‐type component to construct high‐performance hybrid charge storage devices.