EBSCO Logo
Connecting you to content on EBSCOhost
Results
Title

Nano‐sized Co(II), Ni(II), and Zr(IV) complexes of quinaldine‐based azo dye for promising therapeutic and catalytic applications: Synthesis, characterization, density functional theory studies and molecular docking.

Authors

Khedr, Abdalla M.; Gaber, Mohamed; Elsharkawy, Mohsen; Bakr, Eman A.; Atlam, Faten M.

Abstract

Novel azo dye containing the heterocyclic quinaldine nucleus, 3‐((2‐methylquinolin‐4‐yl)diazenyl)naphthalen‐2‐ol HL, and its Co(II), Ni(II) and Zr(IV) nano‐sized metal chelates have been synthesized and fully characterized by alternative analytical and spectral techniques. The finding indicated that the ligand coordinated as a monobasic bidentate via azo nitrogen and hydroxyl oxygen atom, resulting in octahedral geometry towards Co(II) and Zr(IV) complexes, and square planer geometry towards Ni(II) metal ion. Theoretical studies by DFT/B3LYP/6‐311 G(d,p)/LANLDZ including energetic parameters, geometrical optimization, dipole moment, and HOMO–LUMO energy gap were applied to support the geometrical arrangement of the complexes. The produced complexes were generated at the nanoscale, as evidenced by the average particle size from TEM. The average particle size calculated from TEM images for Co(II), Ni(II), and Zr(IV) complexes is 6.0, 12.0, and 5.5 nm, respectively. The antibacterial activity of the ligand compared with its metal complexes shows enhanced activity over the metal complexes against different types of bacteria. Antitumor efficacy of the compounds was tested against A‐549 and PANC‐1 cells, compared with the vinblastine standard. The cytotoxic efficiency of both Co(II) and Ni(II) complexes exceeded that of vinblastine. The anticancer activity of the Zr complex was then studied using molecular docking to determine the interactions between this molecule and PANC‐1. Docking studies revealed that the Zr complex produces four hydrogen bond contacts with the active amino acid residues Arg 136 and Asp 140, two hydrophobic interactions with Val 50 and Leu 147, and two electrostatic interactions with Arg 136. Also, the catalytic property of the free ligand and nanocomplexes were tested on the oxidative degradation of methyl violet 2B dye in the presence of H2O2. The following arrangement was observed for the pseudo‐first‐order rate constants: Co(II) complex (0.068 min−1) > Ni(II) complex (0.066 min−1) > Zr(IV) complex (0.061 min−1) > HL (0.037 min−1).

Subjects

AZO dyes; MOLECULAR theory; DENSITY functional theory; LIGANDS (Chemistry); MOLECULAR docking; ELECTROSTATIC interaction; AMINO acid residues; GENTIAN violet

Publication

Applied Organometallic Chemistry, 2023, Vol 37, Issue 10, p1

ISSN

0268-2605

Publication type

Academic Journal

DOI

10.1002/aoc.7222

EBSCO Connect | Privacy policy | Terms of use | Copyright | Manage my cookies
Journals | Subjects | Sitemap
© 2025 EBSCO Industries, Inc. All rights reserved