EBSCO Logo
Connecting you to content on EBSCOhost
Results
Title

Frontispiz: Machine‐Learning‐Assisted Selective Synthesis of a Semiconductive Silver Thiolate Coordination Polymer with Segregated Paths for Holes and Electrons.

Authors

Wakiya, Takuma; Kamakura, Yoshinobu; Shibahara, Hiroki; Ogasawara, Kazuyoshi; Saeki, Akinori; Nishikubo, Ryosuke; Inokuchi, Akihiro; Yoshikawa, Hirofumi; Tanaka, Daisuke

Abstract

Coordination polymers, crystal engineering, machine learning, semiconductors, silver thiolate networks Frontispiz: Machine-Learning-Assisted Selective Synthesis of a Semiconductive Silver Thiolate Coordination Polymer with Segregated Paths for Holes and Electrons Keywords: coordination polymers; crystal engineering; machine learning; semiconductors; silver thiolate networks EN coordination polymers crystal engineering machine learning semiconductors silver thiolate networks 1 1 1 10/13/21 20211018 NES 211018 B Kristall-Engineering b Die durch maschinelles Lernen unterstützte Synthese von halbleitenden Silberthiolat-Koordinationspolymeren mit segregierten Transportpfaden für Löcher und Elektronen wird von Daisuke Tanaka et al. im Forschungsartikel auf S. 23405 vorgestellt.

Subjects

COORDINATION polymers; SILVER; CRYSTALLINE polymers; ELECTRONS; MACHINE learning

Publication

Angewandte Chemie, 2021, Vol 133, Issue 43, p1

ISSN

0044-8249

Publication type

Academic Journal

DOI

10.1002/ange.202184362

EBSCO Connect | Privacy policy | Terms of use | Copyright | Manage my cookies
Journals | Subjects | Sitemap
© 2025 EBSCO Industries, Inc. All rights reserved