EBSCO Logo
Connecting you to content on EBSCOhost
Results
Title

High‐Performance Bismuth‐Doped Nickel Aerogel Electrocatalyst for the Methanol Oxidation Reaction.

Authors

Dubale, Amare Aregahegn; Zheng, Yuanyuan; Wang, Honglei; Hübner, René; Li, Yi; Yang, Jing; Zhang, Jiangwei; Sethi, Navpreet Kaur; He, Lanqi; Zheng, Zhikun; Liu, Wei

Abstract

Low‐cost, non‐noble‐metal electrocatalysts are required for direct methanol fuel cells, but their development has been hindered by limited activity, high onset potential, low conductivity, and poor durability. A surface electronic structure tuning strategy is presented, which involves doping of a foreign oxophilic post‐transition metal onto transition metal aerogels to achieve a non‐noble‐metal aerogel Ni97Bi3 with unprecedented electrocatalytic activity and durability in methanol oxidation. Trace amounts of Bi are atomically dispersed on the surface of the Ni97Bi3 aerogel, which leads to an optimum shift of the d‐band center of Ni, large compressive strain of Bi, and greatly increased conductivity of the aerogel. The electrocatalyst is endowed with abundant active sites, efficient electron and mass transfer, resistance to CO poisoning, and outstanding performance in methanol oxidation. This work sheds light on the design of high‐performance non‐noble‐metal electrocatalysts.

Subjects

OXIDATION of methanol; METHANOL as fuel; DIRECT methanol fuel cells; ELECTROCATALYSTS; TRANSITION metals; NICKEL; MASS transfer; CHARGE exchange

Publication

Angewandte Chemie, 2020, Vol 132, Issue 33, p13995

ISSN

0044-8249

Publication type

Academic Journal

DOI

10.1002/ange.202004314

EBSCO Connect | Privacy policy | Terms of use | Copyright | Manage my cookies
Journals | Subjects | Sitemap
© 2025 EBSCO Industries, Inc. All rights reserved