Works matching IS 16146832 AND DT 2023 AND VI 13 AND IP 38


Results: 25
    1
    2
    3
    4
    5
    6
    7
    8

    Machine Learning Enhanced High‐Throughput Fabrication and Optimization of Quasi‐2D Ruddlesden–Popper Perovskite Solar Cells (Adv. Energy Mater. 38/2023).

    Published in:
    Advanced Energy Materials, 2023, v. 13, n. 38, p. 1, doi. 10.1002/aenm.202370154
    By:
    • Meftahi, Nastaran;
    • Surmiak, Maciej Adam;
    • Fürer, Sebastian O.;
    • Rietwyk, Kevin James;
    • Lu, Jianfeng;
    • Raga, Sonia Ruiz;
    • Evans, Caria;
    • Michalska, Monika;
    • Deng, Hao;
    • McMeekin, David P.;
    • Alan, Tuncay;
    • Vak, Doojin;
    • Chesman, Anthony S.R.;
    • Christofferson, Andrew J.;
    • Winkler, David A.;
    • Bach, Udo;
    • Russo, Salvy P.
    Publication type:
    Article
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25

    Machine Learning Enhanced High‐Throughput Fabrication and Optimization of Quasi‐2D Ruddlesden–Popper Perovskite Solar Cells.

    Published in:
    Advanced Energy Materials, 2023, v. 13, n. 38, p. 1, doi. 10.1002/aenm.202203859
    By:
    • Meftahi, Nastaran;
    • Surmiak, Maciej Adam;
    • Fürer, Sebastian O.;
    • Rietwyk, Kevin James;
    • Lu, Jianfeng;
    • Raga, Sonia Ruiz;
    • Evans, Caria;
    • Michalska, Monika;
    • Deng, Hao;
    • McMeekin, David P.;
    • Alan, Tuncay;
    • Vak, Doojin;
    • Chesman, Anthony S.R.;
    • Christofferson, Andrew J.;
    • Winkler, David A.;
    • Bach, Udo;
    • Russo, Salvy P.
    Publication type:
    Article