Metal–organic frameworks (MOFs) and covalent organic frameworks (COFs) are important members of crystalline porous materials due to their huge structural diversity and tunability. By hybridizing MOFs or COFs with other materials, restrictions of the pristine materials, i.e., poor conductivity and weak mechanical property, can be effectively circumvented. This review summarizes several hybridization techniques from the molecular level to the micro‐ and macroscales for the preparation of various MOF and COF hybrids. Then, their representative applications as electrochemical energy storage devices are elaborated, such as rechargeable batteries, supercapacitors, polymer electrolytes, and separators. The basic principles and mechanisms for guiding hybridization are also properly clarified.