EBSCO Logo
Connecting you to content on EBSCOhost
Results
Title

Contact‐Based and Proximally Thermosensitive Few‐Layer Graphene Ntc Thermistors with Highly Fast Switching Behavior.

Authors

Umar, Muhammad; Irani, Farid Sayar; Mirbakht, Seyed Sajjad; Yapici, Murat Kaya

Abstract

Patterning graphene onto polymeric materials offers benefits in realizing flexible, stretchable, and wearable multifunctional electrodes. However, the employed integration approaches and use of non‐patternable polymers hinder the patterning of graphene at the sub‐millimeter (mm) scale. Serpentine‐shaped thermally active graphene patterns (thermistors) of 500 × 500 µm2 area are reported by the seamless integration of chemical vapor‐deposited graphene (GCVD) into readily available SU‐8 polymer with MEMS‐compatible cleanroom fabrication processes. The thermistor resistance decreases with an increase in graphene temperature changed by local heat conduction or environmental thermal radiations; hence, exhibits a negative temperature coefficient (NTC) of resistance of 0.0012/°C. Furthermore, very fast resistive switching with 1 s response and 3.2 s recovery time is observed under cyclic heating and cooling. Several application scenarios including, monitoring of surface temperature (e.g., kettle and human body), rapid response (0.25 s) to heat conduction and radiations (0.5 s) from human finger at room temperature for contact and touch‐free proximity switching (e.g., turn ON and OFF an LCD display) are demonstrated. Moreover, owing to its small area less than a ceramic resistor enabled to integrate the fabricated thermistor onto a printed circuit board (PCB) to construct a fully packaged thermometer to monitor ambient temperature.

Publication

Advanced Electronic Materials, 2024, Vol 10, Issue 4, p1

ISSN

2199-160X

Publication type

Academic Journal

DOI

10.1002/aelm.202300723

EBSCO Connect | Privacy policy | Terms of use | Copyright | Manage my cookies
Journals | Subjects | Sitemap
© 2025 EBSCO Industries, Inc. All rights reserved