Found: 195
Select item for more details and to access through your institution.
Formulating the Electrolyte Towards High‐Energy and Safe Rechargeable Lithium–Metal Batteries.
- Published in:
- Angewandte Chemie, 2021, v. 133, n. 30, p. 16690, doi. 10.1002/ange.202103850
- By:
- Publication type:
- Article
Interfacial Evolution of Lithium Dendrites and Their Solid Electrolyte Interphase Shells of Quasi‐Solid‐State Lithium‐Metal Batteries.
- Published in:
- Angewandte Chemie, 2020, v. 132, n. 41, p. 18277, doi. 10.1002/ange.202001117
- By:
- Publication type:
- Article
Building an Air Stable and Lithium Deposition Regulable Garnet Interface from Moderate‐Temperature Conversion Chemistry.
- Published in:
- Angewandte Chemie, 2020, v. 132, n. 29, p. 12167, doi. 10.1002/ange.202003177
- By:
- Publication type:
- Article
Manipulating Layered P2@P3 Integrated Spinel Structure Evolution for High‐Performance Sodium‐Ion Batteries.
- Published in:
- Angewandte Chemie, 2020, v. 132, n. 24, p. 9385, doi. 10.1002/ange.201915650
- By:
- Publication type:
- Article
Enabling a Durable Electrochemical Interface via an Artificial Amorphous Cathode Electrolyte Interphase for Hybrid Solid/Liquid Lithium‐Metal Batteries.
- Published in:
- Angewandte Chemie, 2020, v. 132, n. 16, p. 6647, doi. 10.1002/ange.201916301
- By:
- Publication type:
- Article
Self‐Healable Solid Polymeric Electrolytes for Stable and Flexible Lithium Metal Batteries.
- Published in:
- Angewandte Chemie, 2019, v. 131, n. 50, p. 18314, doi. 10.1002/ange.201910478
- By:
- Publication type:
- Article
Nitriding‐Interface‐Regulated Lithium Plating Enables Flame‐Retardant Electrolytes for High‐Voltage Lithium Metal Batteries.
- Published in:
- Angewandte Chemie, 2019, v. 131, n. 23, p. 7884, doi. 10.1002/ange.201903466
- By:
- Publication type:
- Article
Guiding Uniform Li Plating/Stripping through Lithium–Aluminum Alloying Medium for Long‐Life Li Metal Batteries.
- Published in:
- Angewandte Chemie, 2019, v. 131, n. 4, p. 1106, doi. 10.1002/ange.201811955
- By:
- Publication type:
- Article
An Abnormal 3.7 Volt O3‐Type Sodium‐Ion Battery Cathode.
- Published in:
- Angewandte Chemie, 2018, v. 130, n. 27, p. 8310, doi. 10.1002/ange.201804130
- By:
- Publication type:
- Article
Innentitelbild: A Flexible Solid Electrolyte Interphase Layer for Long‐Life Lithium Metal Anodes (Angew. Chem. 6/2018).
- Published in:
- Angewandte Chemie, 2018, v. 130, n. 6, p. 1436, doi. 10.1002/ange.201713193
- By:
- Publication type:
- Article
A Flexible Solid Electrolyte Interphase Layer for Long‐Life Lithium Metal Anodes.
- Published in:
- Angewandte Chemie, 2018, v. 130, n. 6, p. 1521, doi. 10.1002/ange.201710806
- By:
- Publication type:
- Article
High-Temperature Formation of a Functional Film at the Cathode/Electrolyte Interface in Lithium-Sulfur Batteries: An In Situ AFM Study.
- Published in:
- Angewandte Chemie, 2017, v. 129, n. 46, p. 14625, doi. 10.1002/ange.201706979
- By:
- Publication type:
- Article
Insight into the Interfacial Process and Mechanism in Lithium-Sulfur Batteries: An In Situ AFM Study.
- Published in:
- Angewandte Chemie, 2016, v. 128, n. 51, p. 16067, doi. 10.1002/ange.201608730
- By:
- Publication type:
- Article
Suppressing the P2-O2 Phase Transition of Na<sub>0.67</sub>Mn<sub>0.67</sub>Ni<sub>0.33</sub>O<sub>2</sub> by Magnesium Substitution for Improved Sodium-Ion Batteries.
- Published in:
- Angewandte Chemie, 2016, v. 128, n. 26, p. 7571, doi. 10.1002/ange.201602202
- By:
- Publication type:
- Article
Synthesis and Lithium Storage Properties of Co<sub>3</sub>O<sub>4</sub> Nanosheet-Assembled Multishelled Hollow Spheres.
- Published in:
- Advanced Functional Materials, 2010, v. 20, n. 10, p. 1680, doi. 10.1002/adfm.200902295
- By:
- Publication type:
- Article
Carbon Coated Fe<sub>3</sub>O<sub>4</sub> Nanospindles as a Superior Anode Material for Lithium-Ion Batteries.
- Published in:
- Advanced Functional Materials, 2008, v. 18, n. 24, p. 3941, doi. 10.1002/adfm.200801386
- By:
- Publication type:
- Article
Structure Design of Cathode Electrodes for Solid‐State Batteries: Challenges and Progress.
- Published in:
- Small Structures, 2020, v. 1, n. 3, p. 1, doi. 10.1002/sstr.202000042
- By:
- Publication type:
- Article
An ion‐percolating electrolyte membrane for ultrahigh efficient and dendrite‐free lithium metal batteries.
- Published in:
- InfoMat, 2023, v. 5, n. 12, p. 1, doi. 10.1002/inf2.12498
- By:
- Publication type:
- Article
Advances of polymer binders for silicon‐based anodes in high energy density lithium‐ion batteries.
- Published in:
- InfoMat, 2021, v. 3, n. 5, p. 460, doi. 10.1002/inf2.12185
- By:
- Publication type:
- Article
Guiding Uniform Li Plating/Stripping through Lithium–Aluminum Alloying Medium for Long‐Life Li Metal Batteries.
- Published in:
- Angewandte Chemie International Edition, 2019, v. 58, n. 4, p. 1094, doi. 10.1002/anie.201811955
- By:
- Publication type:
- Article
An Abnormal 3.7 Volt O3‐Type Sodium‐Ion Battery Cathode.
- Published in:
- Angewandte Chemie International Edition, 2018, v. 57, n. 27, p. 8178, doi. 10.1002/anie.201804130
- By:
- Publication type:
- Article
Inside Cover: A Flexible Solid Electrolyte Interphase Layer for Long‐Life Lithium Metal Anodes (Angew. Chem. Int. Ed. 6/2018).
- Published in:
- Angewandte Chemie International Edition, 2018, v. 57, n. 6, p. 1422, doi. 10.1002/anie.201713193
- By:
- Publication type:
- Article
A Flexible Solid Electrolyte Interphase Layer for Long‐Life Lithium Metal Anodes.
- Published in:
- Angewandte Chemie International Edition, 2018, v. 57, n. 6, p. 1505, doi. 10.1002/anie.201710806
- By:
- Publication type:
- Article
High-Temperature Formation of a Functional Film at the Cathode/Electrolyte Interface in Lithium-Sulfur Batteries: An In Situ AFM Study.
- Published in:
- Angewandte Chemie International Edition, 2017, v. 56, n. 46, p. 14433, doi. 10.1002/anie.201706979
- By:
- Publication type:
- Article
Insight into the Interfacial Process and Mechanism in Lithium-Sulfur Batteries: An In Situ AFM Study.
- Published in:
- Angewandte Chemie International Edition, 2016, v. 55, n. 51, p. 15835, doi. 10.1002/anie.201608730
- By:
- Publication type:
- Article
Suppressing the P2-O2 Phase Transition of Na<sub>0.67</sub>Mn<sub>0.67</sub>Ni<sub>0.33</sub>O<sub>2</sub> by Magnesium Substitution for Improved Sodium-Ion Batteries.
- Published in:
- Angewandte Chemie International Edition, 2016, v. 55, n. 26, p. 7445, doi. 10.1002/anie.201602202
- By:
- Publication type:
- Article
Improving the Electrochemical Performance of the Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> Electrode in a Rechargeable Magnesium Battery by Lithium-Magnesium Co-Intercalation.
- Published in:
- Angewandte Chemie International Edition, 2015, v. 54, n. 19, p. 5757, doi. 10.1002/anie.201501005
- By:
- Publication type:
- Article
Lithium-Sulfur Batteries: Electrochemistry, Materials, and Prospects.
- Published in:
- Angewandte Chemie International Edition, 2013, v. 52, n. 50, p. 13186, doi. 10.1002/anie.201304762
- By:
- Publication type:
- Article
An Advanced Selenium-Carbon Cathode for Rechargeable Lithium-Selenium Batteries.
- Published in:
- Angewandte Chemie International Edition, 2013, v. 52, n. 32, p. 8363, doi. 10.1002/anie.201303147
- By:
- Publication type:
- Article
Facile Synthesis of Blocky SiO<italic><sub>x</sub></italic>/C with Graphite‐Like Structure for High‐Performance Lithium‐Ion Battery Anodes.
- Published in:
- Advanced Functional Materials, 2018, v. 28, n. 8, p. 1, doi. 10.1002/adfm.201705235
- By:
- Publication type:
- Article
Size controllable single-crystalline Ni-rich cathodes for high-energy lithium-ion batteries.
- Published in:
- National Science Review, 2023, v. 10, n. 2, p. 1, doi. 10.1093/nsr/nwac226
- By:
- Publication type:
- Article
Progress of rechargeable lithium metal batteries based on conversion reactions.
- Published in:
- National Science Review, 2017, v. 4, n. 1, p. 54, doi. 10.1093/nsr/nww078
- By:
- Publication type:
- Article
Boron-doped sodium layered oxide for reversible oxygen redox reaction in Na-ion battery cathodes.
- Published in:
- Nature Communications, 2021, v. 12, n. 1, p. 1, doi. 10.1038/s41467-021-25610-7
- By:
- Publication type:
- Article
Nanoparticles Engineering for Lithium-Ion Batteries.
- Published in:
- Particle & Particle Systems Characterization, 2013, v. 30, n. 9, p. 737, doi. 10.1002/ppsc.201300130
- By:
- Publication type:
- Article
Encapsulation of Sulfur in a Hollow Porous Carbon Substrate for Superior Li-S Batteries with Long Lifespan.
- Published in:
- Particle & Particle Systems Characterization, 2013, v. 30, n. 4, p. 321, doi. 10.1002/ppsc.201300029
- By:
- Publication type:
- Article
Batteries: Encapsulation of Sulfur in a Hollow Porous Carbon Substrate for Superior Li-S Batteries with Long Lifespan (Part. Part. Syst. Charact. 4/2013).
- Published in:
- Particle & Particle Systems Characterization, 2013, v. 30, n. 4, p. 392, doi. 10.1002/ppsc.201370016
- By:
- Publication type:
- Article
Improving the Electrochemical Performance of the Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> Electrode in a Rechargeable Magnesium Battery by Lithium-Magnesium Co-Intercalation.
- Published in:
- Angewandte Chemie, 2015, v. 127, n. 19, p. 5849, doi. 10.1002/anie.201501005
- By:
- Publication type:
- Article
Lithium-Schwefel-Batterien: Elektrochemie, Materialien und Perspektiven.
- Published in:
- Angewandte Chemie, 2013, v. 125, n. 50, p. 13426, doi. 10.1002/ange.201304762
- By:
- Publication type:
- Article
An Advanced Selenium-Carbon Cathode for Rechargeable Lithium-Selenium Batteries.
- Published in:
- Angewandte Chemie, 2013, v. 125, n. 32, p. 8521, doi. 10.1002/ange.201303147
- By:
- Publication type:
- Article
Tailoring chemical composition of solid electrolyte interphase by selective dissolution for long-life micron-sized silicon anode.
- Published in:
- Nature Communications, 2023, v. 14, n. 1, p. 1, doi. 10.1038/s41467-023-43093-6
- By:
- Publication type:
- Article
Electrospun Silicon Nanoparticle/Porous Carbon Hybrid Nanofibers for Lithium-Ion Batteries.
- Published in:
- Small, 2013, v. 9, n. 16, p. 2684, doi. 10.1002/smll.201202071
- By:
- Publication type:
- Article
In Situ Derived Mixed Ion/Electron Conducting Layer on Top of a Functional Separator for High‐Performance, Dendrite‐Free Rechargeable Lithium‐Metal Batteries.
- Published in:
- Advanced Functional Materials, 2024, v. 34, n. 5, p. 1, doi. 10.1002/adfm.202301638
- By:
- Publication type:
- Article
Exacerbated High‐Temperature Calendar Aging of SiO<sub>x</sub>‐Graphite Electrode Induced by Interparticle Lithium Crosstalk.
- Published in:
- Advanced Functional Materials, 2024, v. 34, n. 2, p. 1, doi. 10.1002/adfm.202310309
- By:
- Publication type:
- Article
A Universal Strategy toward Air‐Stable and High‐Rate O3 Layered Oxide Cathodes for Na‐Ion Batteries.
- Published in:
- Advanced Functional Materials, 2022, v. 32, n. 17, p. 1, doi. 10.1002/adfm.202111466
- By:
- Publication type:
- Article
Advanced Electrolytes Enabling Safe and Stable Rechargeable Li‐Metal Batteries: Progress and Prospects.
- Published in:
- Advanced Functional Materials, 2021, v. 31, n. 45, p. 1, doi. 10.1002/adfm.202105253
- By:
- Publication type:
- Article
Layered Oxide Cathodes Promoted by Structure Modulation Technology for Sodium‐Ion Batteries.
- Published in:
- Advanced Functional Materials, 2020, v. 30, n. 30, p. 1, doi. 10.1002/adfm.202001334
- By:
- Publication type:
- Article
Stabilizing Polymer–Lithium Interface in a Rechargeable Solid Battery.
- Published in:
- Advanced Functional Materials, 2020, v. 30, n. 6, p. 1, doi. 10.1002/adfm.201908047
- By:
- Publication type:
- Article
Progress of the Interface Design in All‐Solid‐State Li–S Batteries.
- Published in:
- Advanced Functional Materials, 2018, v. 28, n. 38, p. 1, doi. 10.1002/adfm.201707533
- By:
- Publication type:
- Article
Tuning wettability of molten lithium via a chemical strategy for lithium metal anodes.
- Published in:
- Nature Communications, 2019, v. 10, n. 1, p. N.PAG, doi. 10.1038/s41467-019-12938-4
- By:
- Publication type:
- Article
A Flexible Solid Electrolyte with Multilayer Structure for Sodium Metal Batteries.
- Published in:
- Advanced Energy Materials, 2020, v. 10, n. 9, p. 1, doi. 10.1002/aenm.201903966
- By:
- Publication type:
- Article